{ "id": "1301.3303", "version": "v1", "published": "2013-01-15T10:58:29.000Z", "updated": "2013-01-15T10:58:29.000Z", "title": "Modular forms, hypergeometric functions and congruences", "authors": [ "Matija Kazalicki" ], "comment": "9 pages", "categories": [ "math.NT" ], "abstract": "Using the theory of Stienstra and Beukers, we prove various elementary congruences for the numbers \\sum \\binom{2i_1}{i_1}^2\\binom{2i_2}{i_2}^2...\\binom{2i_k}{i_k}^2, where k,n \\in N, and the summation is over the integers i_1, i_2, ...i_k >= 0 such that i_1+i_2+...+i_k=n. To obtain that, we study the arithmetic properties of Fourier coefficients of certain (weakly holomorphic) modular forms.", "revisions": [ { "version": "v1", "updated": "2013-01-15T10:58:29.000Z" } ], "analyses": { "keywords": [ "modular forms", "hypergeometric functions", "elementary congruences", "arithmetic properties", "fourier coefficients" ], "note": { "typesetting": "TeX", "pages": 9, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1301.3303K" } } }