{ "id": "1301.3188", "version": "v2", "published": "2013-01-15T00:15:29.000Z", "updated": "2013-12-12T13:52:35.000Z", "title": "Enumerating indices of Schubert varieties defined by inclusions", "authors": [ "Michael H. Albert", "Robert Brignall" ], "comment": "14 pages, 3 figures. Accepted in Journal of Combinatorial Theory, Series A", "categories": [ "math.CO", "math.AG" ], "abstract": "By extending the notion of grid classes to include infinite grids, we establish a structural characterisation of the simple permutations in Av(4231, 35142, 42513, 351624), a pattern class which has three different connections with algebraic geometry, including the specification of indices of Schubert varieties defined by inclusions. This characterisation leads to the enumeration of the class.", "revisions": [ { "version": "v2", "updated": "2013-12-12T13:52:35.000Z" } ], "analyses": { "subjects": [ "05A05", "05A15", "14M15" ], "keywords": [ "schubert varieties", "enumerating indices", "inclusions", "infinite grids", "algebraic geometry" ], "note": { "typesetting": "TeX", "pages": 14, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1301.3188A" } } }