{ "id": "1301.3039", "version": "v2", "published": "2013-01-11T11:49:48.000Z", "updated": "2014-01-22T15:39:02.000Z", "title": "On the definite integral of two confluent hypergeometric functions related to the Kampé de Fériet double series", "authors": [ "Rytis Jursenas" ], "comment": "14 pages, accepted for publication in Lith Math J", "categories": [ "math.CA" ], "abstract": "The Kamp\\'{e} de F\\'{e}riet double series $F_{1:1;1}^{1:1;1}$ is studied through the solution to the associated first-order nonhomogeneous differential equation. It is shown that the integral of $t^{\\beta+l}M(\\cdot;\\beta;\\lambda t)M(\\cdot;\\beta;-\\lambda t)$ over $t\\in[0,T]$, $T\\geq0$, $l=0,1,\\ldots$, $\\Re\\beta+l>-1$, is a linear combination of functions $F_{1:1;1}^{1:1;1}$. The integral is a generalization of a class of so-called Coulomb integrals involving regular Coulomb wave functions.", "revisions": [ { "version": "v2", "updated": "2014-01-22T15:39:02.000Z" } ], "analyses": { "subjects": [ "33C15", "33C20", "33C60" ], "keywords": [ "confluent hypergeometric functions", "fériet double series", "definite integral", "regular coulomb wave functions", "associated first-order nonhomogeneous differential equation" ], "note": { "typesetting": "TeX", "pages": 14, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1301.3039J" } } }