{ "id": "1301.2666", "version": "v1", "published": "2013-01-12T09:23:46.000Z", "updated": "2013-01-12T09:23:46.000Z", "title": "Crossover from Goldstone to critical fluctuations: Casimir forces in confined O${\\bf(n)}$ symmetric systems", "authors": [ "Volker Dohm" ], "comment": "2 figures", "journal": "Physical Review Letters 110, 107207 (2013)", "doi": "10.1103/PhysRevLett.110.107207", "categories": [ "cond-mat.stat-mech" ], "abstract": "We study the crossover between thermodynamic Casimir forces arising from long-range fluctuations due to Goldstone modes and those arising from critical fluctuations. Both types of forces exist in the low-temperature phase of O$(n)$ symmetric systems for $n>1$ in a $d$-dimensional ${L_\\parallel^{d-1} \\times L}$ slab geometry with a finite aspect ratio $\\rho = L/L_\\parallel$. Our finite-size renormalization-group treatment for periodic boundary conditions describes the entire crossover from the Goldstone regime with a nonvanishing constant tail of the finite-size scaling function far below $T_c$ up to the region far above $T_c$ including the critical regime with a minimum of the scaling function slightly below $T_c$. Our analytic result for $\\rho \\ll 1$ agrees well with Monte Carlo data for the three-dimensional XY model. A quantitative prediction is given for the crossover of systems in the Heisenberg universality class.", "revisions": [ { "version": "v1", "updated": "2013-01-12T09:23:46.000Z" } ], "analyses": { "subjects": [ "75.40.-s", "05.70.Jk", "64.60.-i" ], "keywords": [ "symmetric systems", "critical fluctuations", "heisenberg universality class", "three-dimensional xy model", "monte carlo data" ], "tags": [ "journal article" ], "publication": { "publisher": "APS", "journal": "Physical Review Letters", "year": 2013, "month": "Mar", "volume": 110, "number": 10, "pages": 107207 }, "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013PhRvL.110j7207D" } } }