{ "id": "1301.2460", "version": "v2", "published": "2013-01-11T11:31:34.000Z", "updated": "2013-08-04T16:17:56.000Z", "title": "On unique continuation for Schrödinger operators of fractional and higher orders", "authors": [ "Ihyeok Seo" ], "comment": "Revised version, to appear in Mathematische Nachrichten", "categories": [ "math.AP" ], "abstract": "In this note we study the property of unique continuation for solutions of $|(-\\Delta)^{\\alpha/2}u|\\leq|Vu|$, where $V$ is in a function class of potentials including $\\bigcup_{p>n/\\alpha}L^p(\\mathbb{R}^n)$ for $n-1\\leq\\alpha