{ "id": "1301.1790", "version": "v1", "published": "2013-01-09T09:39:13.000Z", "updated": "2013-01-09T09:39:13.000Z", "title": "Two permutation classes enumerated by the central binomial coefficients", "authors": [ "Marilena Barnabei", "Flavio Bonetti", "Matteo Silimbani" ], "comment": "26 pages, 3 figures", "categories": [ "math.CO" ], "abstract": "We define a map between the set of permutations that avoid either the four patterns $3214,3241,4213,4231$ or $3124,3142,4123,4132$, and the set of Dyck prefixes. This map, when restricted to either of the two classes, turns out to be a bijection that allows us to determine some notable features of these permutations, such as the distribution of the statistics \"number of ascents\", \"number of left-to-right maxima\", \"first element\", and \"position of the maximum element\"", "revisions": [ { "version": "v1", "updated": "2013-01-09T09:39:13.000Z" } ], "analyses": { "keywords": [ "central binomial coefficients", "permutation classes", "first element", "left-to-right maxima", "maximum element" ], "note": { "typesetting": "TeX", "pages": 26, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1301.1790B" } } }