{ "id": "1301.1524", "version": "v2", "published": "2013-01-08T13:32:40.000Z", "updated": "2013-03-20T02:49:09.000Z", "title": "Positivity of $|p|^a|q|^b+|q|^b|p|^a$", "authors": [ "Li Chen", "Heinz Siedentop" ], "comment": "6 pages", "categories": [ "math-ph", "math.FA", "math.MP" ], "abstract": "We show that $$J_{a,b,n}:=\\frac12(|p|^a|q|^b+|q|^b|p|^a)$$ is positive, if $n\\geq b+a$. (Here $q$ is the multiplication by $x$ and $p:= \\mathrm{i}^{-1}\\nabla$.) Furthermore we show that it generalizes the generalized Hardy inequalities for the fractional Laplacians.", "revisions": [ { "version": "v2", "updated": "2013-03-20T02:49:09.000Z" } ], "analyses": { "subjects": [ "47A63", "26D10", "81Q10" ], "keywords": [ "positivity", "generalized hardy inequalities", "fractional laplacians" ], "note": { "typesetting": "TeX", "pages": 6, "language": "en", "license": "arXiv", "status": "editable" } } }