{ "id": "1301.1204", "version": "v2", "published": "2013-01-07T14:30:04.000Z", "updated": "2013-12-18T17:34:22.000Z", "title": "Equivalence of blocks for the general linear Lie superalgebra", "authors": [ "Shun-Jen Cheng", "Volodymyr Mazorchuk", "Weiqiang Wang" ], "comment": "Formulation of Theorem 2.1 fixed in the last version", "journal": "Lett. Math. Phys. 103 (2013) 1313 - 1327", "categories": [ "math.RT" ], "abstract": "We develop a reduction procedure which provides an equivalence (as highest weight categories) from an arbitrary block (defined in terms of the central character and the integral Weyl group) of the BGG category O for a general linear Lie superalgebra to an integral block of O for (possibly a direct sum of) general linear Lie superalgebras. We also establish indecomposability of blocks of O.", "revisions": [ { "version": "v2", "updated": "2013-12-18T17:34:22.000Z" } ], "analyses": { "subjects": [ "17B10" ], "keywords": [ "general linear lie superalgebra", "equivalence", "highest weight categories", "integral weyl group", "arbitrary block" ], "tags": [ "journal article" ], "publication": { "doi": "10.1007/s11005-013-0642-5", "journal": "Letters in Mathematical Physics", "year": 2013, "month": "Dec", "volume": 103, "number": 12, "pages": 1313 }, "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013LMaPh.103.1313C" } } }