{ "id": "1301.1165", "version": "v1", "published": "2013-01-07T12:05:54.000Z", "updated": "2013-01-07T12:05:54.000Z", "title": "Zebra-percolation on Cayley trees", "authors": [ "D. Gandolfo", "U. A. Rozikov", "J. Ruiz" ], "comment": "8 pages, 2 figures", "categories": [ "math.PR" ], "abstract": "We consider Bernoulli (bond) percolation with parameter $p$ on the Cayley tree of order $k$. We introduce the notion of zebra-percolation that is percolation by paths of alternating open and closed edges. In contrast with standard percolation with critical threshold at $p_c= 1/k$, we show that zebra-percolation occurs between two critical values $p_{{\\rm c},1}$ and $p_{{\\rm c},2}$ (explicitly given). We provide the specific formula of zebra-percolation function.", "revisions": [ { "version": "v1", "updated": "2013-01-07T12:05:54.000Z" } ], "analyses": { "subjects": [ "60K35", "82B43" ], "keywords": [ "cayley tree", "standard percolation", "zebra-percolation occurs", "specific formula", "zebra-percolation function" ], "note": { "typesetting": "TeX", "pages": 8, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1301.1165G" } } }