{ "id": "1301.0938", "version": "v2", "published": "2013-01-05T20:05:02.000Z", "updated": "2013-01-09T11:12:00.000Z", "title": "Spectral norm of random Toeplitz matrices", "authors": [ "Malika Kharouf" ], "comment": "This paper has been withdrawn by the author for improvement", "categories": [ "math.PR" ], "abstract": "In this work, we consider symmetric random Toeplitz matrices $T_n$ generated by i.i.d. zero mean random variables ${X_k}$ satisfying the moment conditions: $E|X_k|^2=1$ and $\\E|X_1|^n \\le n^{\\sqrt{n}}$ for all $n\\ge 3$. We prove that the largest eigenvalue of $T_n$ scaled by $\\sqrt{n log(n)}$ converges almost surely to $1$.", "revisions": [ { "version": "v2", "updated": "2013-01-09T11:12:00.000Z" } ], "analyses": { "subjects": [ "15A18", "60F05" ], "keywords": [ "spectral norm", "zero mean random variables", "symmetric random toeplitz matrices", "moment conditions", "largest eigenvalue" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1301.0938K" } } }