{ "id": "1301.0486", "version": "v2", "published": "2013-01-03T15:52:38.000Z", "updated": "2019-05-06T15:49:25.000Z", "title": "Carleman Estimates for Parabolic Operators with Discontinuous and Anisotropic Diffusion Coefficients, an Elementary Approach", "authors": [ "Qi Lü", "Xu Zhang" ], "comment": "The result is not satisfied", "categories": [ "math.OC", "math.AP" ], "abstract": "By using some deep tools from microlocal analysis, J. Le Rousseau and L. Robbiano (Invent. Math., 183 (2011), 245--336) established several Carleman estimates for parabolic operators with isotropic diffusion coefficients which have jumps at interfaces. In this paper, we revisit the same problem but for the general case of anisotropic diffusion coefficients. Our main tools are a pointwise estimate for parabolic operators and a suitable chosen weight function.", "revisions": [ { "version": "v1", "updated": "2013-01-03T15:52:38.000Z", "comment": "26 page", "journal": null, "doi": null }, { "version": "v2", "updated": "2019-05-06T15:49:25.000Z" } ], "analyses": { "keywords": [ "anisotropic diffusion coefficients", "parabolic operators", "carleman estimates", "elementary approach", "suitable chosen weight function" ], "note": { "typesetting": "TeX", "pages": 26, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1301.0486L" } } }