{ "id": "1301.0293", "version": "v2", "published": "2013-01-02T19:18:58.000Z", "updated": "2013-01-27T19:45:51.000Z", "title": "Interlace polynomials and Tutte polynomials", "authors": [ "Lorenzo Traldi" ], "comment": "This article has been superseded by arXiv:1301.4946", "categories": [ "math.CO" ], "abstract": "Let G be a graph with adjacency matrix A(G). Consider the matrix IA(G)=(I | A(G)), where I is the identity matrix, and let M(IA(G)) be the binary matroid represented by IA(G). Then suitably parametrized versions of the Tutte polynomial of M(IA(G)) yield the interlace polynomials of G, introduced by Arratia, Bollob\\'as and Sorkin [J. Combin. Theory Ser. B 92 (2004) 199-233; Combinatorica 24 (2004) 567-584]. Interlace polynomials subsequently introduced by other authors may be obtained from parametrized Tutte polynomials of the binary matroid represented by (I | A(G) | I+A(G)).", "revisions": [ { "version": "v2", "updated": "2013-01-27T19:45:51.000Z" } ], "analyses": { "subjects": [ "05C50" ], "keywords": [ "interlace polynomials", "binary matroid", "adjacency matrix", "theory ser", "parametrized tutte polynomials" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }