{ "id": "1212.6816", "version": "v1", "published": "2012-12-31T04:33:12.000Z", "updated": "2012-12-31T04:33:12.000Z", "title": "The defocusing $\\dot{H}^{1/2}$-critical NLS in high dimensions", "authors": [ "Jason Murphy" ], "comment": "17 pages", "categories": [ "math.AP" ], "abstract": "We consider the defocusing $\\dot{H}^{1/2}$-critical nonlinear Schr\\\"odinger equation in dimensions $d\\geq 5$. In the spirit of Kenig and Merle [Trans. Amer. Math. Soc. 362 (2010), 1937--1962], we combine a concentration-compactness approach with the Lin--Strauss Morawetz inequality to prove that if a solution $u$ is bounded in $\\dot{H}^{1/2}$ throughout its lifespan, then $u$ is global and scatters.", "revisions": [ { "version": "v1", "updated": "2012-12-31T04:33:12.000Z" } ], "analyses": { "keywords": [ "high dimensions", "critical nls", "defocusing", "lin-strauss morawetz inequality", "concentration-compactness approach" ], "note": { "typesetting": "TeX", "pages": 17, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1212.6816M" } } }