{ "id": "1212.6353", "version": "v1", "published": "2012-12-27T11:43:13.000Z", "updated": "2012-12-27T11:43:13.000Z", "title": "Integral with respect to the $G$-Brownian local time", "authors": [ "Litan Yan", "Xichao Sun", "Bo Gao" ], "comment": "24 pages", "categories": [ "math.PR", "math.FA" ], "abstract": "Let ${\\mathscr L}$ be the local time of $G$-Brownian motion $B$. In this paper, we prove the existence of the quadratic covariation $_{t}$ and the integral $\\int_{\\mathbb R}f(x){\\mathscr L}(dx,t)$. Moreover, a sublinear version of the Bouleau-Yor identity $$ \\int_{\\mathbb R}f(x){\\mathscr L}(dx,t)=-_{t} $$ is showed to hold under some suitable conditions. These allow us to write the It\\^o's formula for $C^1$-functions.", "revisions": [ { "version": "v1", "updated": "2012-12-27T11:43:13.000Z" } ], "analyses": { "subjects": [ "60G05", "60G20", "60H05" ], "keywords": [ "brownian local time", "brownian motion", "bouleau-yor identity", "sublinear version", "quadratic covariation" ], "note": { "typesetting": "TeX", "pages": 24, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1212.6353Y" } } }