{ "id": "1212.6351", "version": "v1", "published": "2012-12-27T11:33:08.000Z", "updated": "2012-12-27T11:33:08.000Z", "title": "Lie and conditional symmetries of the three-component diffusive Lotka - Volterra system", "authors": [ "Roman Cherniha", "Vasyl' Davydovych" ], "categories": [ "math-ph", "math.MP", "nlin.SI" ], "abstract": "Lie and Q-conditional symmetries of the classical three-component diffusive Lotka - Volterra system in the case of one space variable are studied. The group-classification problems for finding Lie symmetries and Q-conditional symmetries of the first type are completely solved. Notably, non-Lie symmetries (Q-conditional symmetry operators) for a multi-component non-linear reaction-diffusion system are constructed for the first time. An example of non-Lie symmetry reduction for solving a biologically motivated problem is presented.", "revisions": [ { "version": "v1", "updated": "2012-12-27T11:33:08.000Z" } ], "analyses": { "keywords": [ "volterra system", "conditional symmetries", "multi-component non-linear reaction-diffusion system", "q-conditional symmetry operators", "non-lie symmetry reduction" ], "tags": [ "journal article" ], "publication": { "doi": "10.1088/1751-8113/46/18/185204", "journal": "Journal of Physics A Mathematical General", "year": 2013, "month": "May", "volume": 46, "number": 18, "pages": 185204 }, "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013JPhA...46r5204C" } } }