{ "id": "1212.6070", "version": "v1", "published": "2012-12-25T17:42:12.000Z", "updated": "2012-12-25T17:42:12.000Z", "title": "The total external branch length of Beta-coalescents", "authors": [ "Götz Kersting", "Iulia Stanciu", "Anton Wakolbinger" ], "comment": "17 pages, 2 figures", "categories": [ "math.PR" ], "abstract": "For $1<\\alpha <2$ we derive the asymptotic distribution of the total length of {\\em external} branches of a Beta$(2-\\alpha, \\alpha)$-coalescent as the number $n$ of leaves becomes large. It turns out the fluctuations of the external branch length follow those of $\\tau_n^{2-\\alpha}$ over the entire parameter regime, where $\\tau_n$ denotes the random number of coalescences that bring the $n$ lineages down to one. This is in contrast to the fluctuation behavior of the total branch length, which exhibits a transition at $\\alpha_0 = (1+\\sqrt 5)/2$.", "revisions": [ { "version": "v1", "updated": "2012-12-25T17:42:12.000Z" } ], "analyses": { "subjects": [ "60K35", "60F05", "60J10" ], "keywords": [ "total external branch length", "beta-coalescents", "total branch length", "entire parameter regime", "asymptotic distribution" ], "note": { "typesetting": "TeX", "pages": 17, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1212.6070K" } } }