{ "id": "1212.5838", "version": "v2", "published": "2012-12-23T22:16:25.000Z", "updated": "2013-08-28T08:48:05.000Z", "title": "Model theory of fields with free operators in characteristic zero", "authors": [ "Rahim Moosa", "Thomas Scanlon" ], "categories": [ "math.LO", "math.AG", "math.RA" ], "abstract": "Generalising and unifying the known theorems for difference and differential fields, it is shown that for every finite free ${\\mathbb S}$-algebra ${\\mathcal D}$ over a field $A$ of characteristic zero the theory of ${\\mathcal D}$-fields has a model companion ${\\mathcal D}$-CF$_0$ which is simple and satisfies the Zilber dichotomy for finite-dimensional minimal types.", "revisions": [ { "version": "v2", "updated": "2013-08-28T08:48:05.000Z" } ], "analyses": { "keywords": [ "characteristic zero", "free operators", "model theory", "finite-dimensional minimal types", "finite free" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1212.5838M" } } }