{ "id": "1212.5754", "version": "v1", "published": "2012-12-23T02:36:35.000Z", "updated": "2012-12-23T02:36:35.000Z", "title": "Universal deformation rings of string modules over a certain symmetric special biserial algebra", "authors": [ "Jose A. Velez-Marulanda" ], "categories": [ "math.RT" ], "abstract": "Let $\\k$ be an algebraically closed field, let $\\A$ be a finite dimensional $\\k$-algebra and let $V$ be a $\\A$-module with stable endomorphism ring isomorphic to $\\k$. If $\\A$ is self-injective then $V$ has a universal deformation ring $R(\\A,V)$, which is a complete local commutative Noetherian $\\k$-algebra with residue field $\\k$. Moreover, if $\\Lambda$ is also a Frobenius $\\k$-algebra then $R(\\A,V)$ is stable under syzygies. We use these facts to determine the universal deformation rings of string $\\Ar$-modules whose stable endomorphism ring isomorphic to $\\k$, where $\\Ar$ is a symmetric special biserial $\\k$-algebra that has quiver with relations depending on the four parameters $ \\bar{r}=(r_0,r_1,r_2,k)$ with $r_0,r_1,r_2\\geq 2$ and $k\\geq 1$.", "revisions": [ { "version": "v1", "updated": "2012-12-23T02:36:35.000Z" } ], "analyses": { "subjects": [ "16G10", "16G20", "20C20" ], "keywords": [ "universal deformation ring", "symmetric special biserial algebra", "string modules", "stable endomorphism ring isomorphic", "complete local commutative noetherian" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1212.5754V" } } }