{ "id": "1212.5197", "version": "v1", "published": "2012-12-20T19:18:02.000Z", "updated": "2012-12-20T19:18:02.000Z", "title": "Seven new champion linear codes", "authors": [ "Gavin Brown", "Alexander M. Kasprzyk" ], "comment": "10 pages, 4 figures", "journal": "LMS J. Comput. Math. 16 (2013) 109-117", "doi": "10.1112/S1461157013000041", "categories": [ "math.CO", "cs.IT", "math.IT" ], "abstract": "We exhibit seven linear codes exceeding the current best known minimum distance d for their dimension k and block length n. Each code is defined over F_8, and their invariants [n,k,d] are given by [49,13,27], [49,14,26], [49,16,24], [49,17,23], [49,19,21], [49,25,16] and [49,26,15]. Our method includes an exhaustive search of all monomial evaluation codes generated by points in the [0,5]x[0,5] lattice square.", "revisions": [ { "version": "v1", "updated": "2012-12-20T19:18:02.000Z" } ], "analyses": { "subjects": [ "14G50", "52B20", "14M25" ], "keywords": [ "champion linear codes", "lattice square", "current best", "monomial evaluation codes", "minimum distance" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 10, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1212.5197B" } } }