{ "id": "1212.5008", "version": "v1", "published": "2012-12-20T12:37:49.000Z", "updated": "2012-12-20T12:37:49.000Z", "title": "On signless Laplacian coefficients of unicyclic graphs with given matching number", "authors": [ "Jie Zhang", "Xiao-Dong Zhang" ], "comment": "39 pages, 5 figures", "categories": [ "math.CO" ], "abstract": "Let $G$ be an unicyclic graph of order $n$ and let $Q_G(x)= det(xI-Q(G))={matrix} \\sum_{i=1}^n (-1)^i \\varphi_i x^{n-i}{matrix}$ be the characteristic polynomial of the signless Laplacian matrix of a graph $G$. We give some transformations of $G$ which decrease all signless Laplacian coefficients in the set $\\mathcal{G}(n,m)$. $\\mathcal{G}(n,m)$ denotes all n-vertex unicyclic graphs with matching number $m$. We characterize the graphs which minimize all the signless Laplacian coefficients in the set $\\mathcal{G}(n,m)$ with odd (resp. even) girth. Moreover, we find the extremal graphs which have minimal signless Laplacian coefficients in the set $\\mathcal{G}(n)$ of all $n$-vertex unicyclic graphs with odd (resp. even) girth.", "revisions": [ { "version": "v1", "updated": "2012-12-20T12:37:49.000Z" } ], "analyses": { "subjects": [ "05C50" ], "keywords": [ "matching number", "minimal signless laplacian coefficients", "n-vertex unicyclic graphs", "signless laplacian matrix", "extremal graphs" ], "note": { "typesetting": "TeX", "pages": 39, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1212.5008Z" } } }