{ "id": "1212.4679", "version": "v2", "published": "2012-12-19T14:44:06.000Z", "updated": "2013-11-20T11:14:43.000Z", "title": "Multi-tiling and Riesz bases", "authors": [ "Sigrid Grepstad", "Nir Lev" ], "journal": "Advances in Mathematics, Vol. 252, p. 1-6, 2014", "categories": [ "math.CA", "math.FA" ], "abstract": "Let S be a bounded, Riemann measurable set in R^d, and L be a lattice. By a theorem of Fuglede, if S tiles R^d with translation set L, then S has an orthogonal basis of exponentials. We show that, under the more general condition that S multi-tiles R^d with translation set L, S has a Riesz basis of exponentials. The proof is based on Meyer's quasicrystals.", "revisions": [ { "version": "v2", "updated": "2013-11-20T11:14:43.000Z" } ], "analyses": { "keywords": [ "riesz bases", "translation set", "riemann measurable set", "riesz basis", "multi-tiling" ], "tags": [ "journal article" ], "publication": { "publisher": "Elsevier", "journal": "Adv. Math." }, "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1212.4679G" } } }