{ "id": "1212.4348", "version": "v1", "published": "2012-12-18T13:36:36.000Z", "updated": "2012-12-18T13:36:36.000Z", "title": "On partial sums of the Möbius and Liouville functions for number fields", "authors": [ "Yusuke Fujisawa", "Makoto Minamide" ], "comment": "13 pages", "categories": [ "math.NT" ], "abstract": "Landau examined the partial sums of the M\\\"obius function and the Liouville function for a number field $K$. First we shall try again the same problem by using a new Perron's formula due to Liu and Ye. Next we consider the equivalent theorem of the grand Riemann hypothesis for the Dedekind zeta-function of $K$ and that of the prime ideal theorem.", "revisions": [ { "version": "v1", "updated": "2012-12-18T13:36:36.000Z" } ], "analyses": { "subjects": [ "11A25", "11R42" ], "keywords": [ "partial sums", "number field", "liouville function", "prime ideal theorem", "grand riemann hypothesis" ], "note": { "typesetting": "TeX", "pages": 13, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1212.4348F" } } }