{ "id": "1212.3983", "version": "v1", "published": "2012-12-17T13:22:24.000Z", "updated": "2012-12-17T13:22:24.000Z", "title": "An Upper bound on the chromatic number of circle graphs without $K_4$", "authors": [ "G. V. Nenashev" ], "journal": "Journal of Mathematical Sciences, 2012, Volume 184, Issue 5, pp 629-633", "doi": "10.1007/s10958-012-0886-0", "categories": [ "math.CO" ], "abstract": "Let $G$ be a circle graph without clique on 4 vertices. We prove that the chromatic number of $G$ doesn't exceed 30.", "revisions": [ { "version": "v1", "updated": "2012-12-17T13:22:24.000Z" } ], "analyses": { "subjects": [ "05C15", "05C10" ], "keywords": [ "chromatic number", "circle graph", "upper bound" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1212.3983N" } } }