{ "id": "1212.3816", "version": "v2", "published": "2012-12-16T18:48:15.000Z", "updated": "2013-01-04T22:22:58.000Z", "title": "Tail decay for the distribution of the endpoint of a directed polymer", "authors": [ "Thomas Bothner", "Karl Liechty" ], "comment": "24 pages, 2 figures", "categories": [ "math-ph", "math.MP", "math.PR", "nlin.SI" ], "abstract": "We obtain an asymptotic expansion for the tails of the random variable $\\tcal=\\arg\\max_{u\\in\\mathbb{R}}(\\mathcal{A}_2(u)-u^2)$ where $\\mathcal{A}_2$ is the Airy$_2$ process. Using the formula of Schehr \\cite{Sch} that connects the density function of $\\tcal$ to the Hastings-McLeod solution of the second Painlev\\'e equation, we prove that as $t\\rightarrow\\infty$, $\\mathbb{P}(|\\tcal|>t)=Ce^{-4/3\\varphi(t)}t^{-145/32}(1+O(t^{-3/4}))$, where $\\varphi(t)=t^3-2t^{3/2}+3t^{3/4}$, and the constant $C$ is given explicitly.", "revisions": [ { "version": "v2", "updated": "2013-01-04T22:22:58.000Z" } ], "analyses": { "subjects": [ "60K35", "37A50", "35Q15" ], "keywords": [ "tail decay", "directed polymer", "distribution", "second painleve equation", "density function" ], "tags": [ "journal article" ], "publication": { "doi": "10.1088/0951-7715/26/5/1449", "journal": "Nonlinearity", "year": 2013, "month": "May", "volume": 26, "number": 5, "pages": 1449 }, "note": { "typesetting": "TeX", "pages": 24, "language": "en", "license": "arXiv", "status": "editable", "inspire": 1207679, "adsabs": "2013Nonli..26.1449B" } } }