{ "id": "1212.3754", "version": "v2", "published": "2012-12-16T06:19:40.000Z", "updated": "2012-12-18T13:40:37.000Z", "title": "Decay of the solution to the bipolar Euler-Poisson system with damping in $\\mathbb{R}^3$", "authors": [ "Zhigang Wu", "Weike Wang" ], "comment": "20 pages", "categories": [ "math.AP" ], "abstract": "We construct the global solution to the Cauchy's problem of the bipolar Euler-Poisson equations with damping in $\\mathbb{R}^3$ when $H^3$ norm of the initial data is small. If further, the $\\dot{H}^{-s}$ norm ($0\\leq s<3/2)$ or $\\dot{B}_{2,\\infty}^{-s}$ norm ($0