{ "id": "1212.3724", "version": "v3", "published": "2012-12-15T20:39:24.000Z", "updated": "2014-07-14T11:20:34.000Z", "title": "Propagation of chaos for the spatially homogeneous Landau equation for Maxwellian molecules", "authors": [ "Kleber Carrapatoso" ], "comment": "52 pages. Typos corrected, improvement on the presentation", "categories": [ "math.AP", "math.PR" ], "abstract": "We prove a quantitative propagation of chaos, uniformly in time, for the spatially homogeneous Landau equation in the case of Maxwellian molecules. We improve the results of Fontbona, Gu\\'erin and M\\'el\\'eard \\cite{FonGueMe} and Fournier \\cite{Fournier} where the propagation of chaos is proved for finite time. Moreover, we prove a quantitative estimate on the rate of convergence to equilibrium uniformly in the number of particles.", "revisions": [ { "version": "v3", "updated": "2014-07-14T11:20:34.000Z" } ], "analyses": { "keywords": [ "spatially homogeneous landau equation", "maxwellian molecules", "finite time", "quantitative propagation" ], "note": { "typesetting": "TeX", "pages": 52, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1212.3724C" } } }