{ "id": "1212.3505", "version": "v1", "published": "2012-12-14T15:45:48.000Z", "updated": "2012-12-14T15:45:48.000Z", "title": "On the Maximum Number of k-Hooks of Partitions of n", "authors": [ "Anna R. B. Fan", "Harold R. L. Yang", "Rebecca T. Yu" ], "comment": "14 pages, 8 figures", "categories": [ "math.CO", "math.NT" ], "abstract": "Let $\\alpha_k(\\lambda)$ denote the number of $k$-hooks in a partition $\\lambda$ and let $b(n,k)$ be the maximum value of $\\alpha_k(\\lambda)$ among partitions of $n$. Amdeberhan posed a conjecture on the generating function of $b(n,1)$. We give a proof of this conjecture. In general, we obtain a formula that can be used to determine $b(n,k)$. This leads to a generating function formula for $b(n,k)$. We introduce the notion of nearly $k$-triangular partitions. We show that for any $n$, there is a nearly $k$-triangular partition which can be transformed into a partition of $n$ that attains the maximum number of $k$-hooks. The operations for the transformation enable us to compute the number $b(n,k)$.", "revisions": [ { "version": "v1", "updated": "2012-12-14T15:45:48.000Z" } ], "analyses": { "subjects": [ "05A15", "05A17" ], "keywords": [ "maximum number", "triangular partition", "maximum value", "conjecture", "generating function formula" ], "note": { "typesetting": "TeX", "pages": 14, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1212.3505F" } } }