{ "id": "1212.3093", "version": "v1", "published": "2012-12-13T09:10:00.000Z", "updated": "2012-12-13T09:10:00.000Z", "title": "Hadwiger's conjecture for graphs with infinite chromatic number", "authors": [ "Dominic van der Zypen" ], "comment": "2 pages", "categories": [ "math.CO", "cs.DM", "math.LO" ], "abstract": "We construct a connected graph H such that (1) \\chi(H) = \\omega; (2) K_\\omega, the complete graph on \\omega points, is not a minor of H. Therefore Hadwiger's conjecture does not hold for graphs with infinite coloring number.", "revisions": [ { "version": "v1", "updated": "2012-12-13T09:10:00.000Z" } ], "analyses": { "subjects": [ "05C15", "05C83" ], "keywords": [ "infinite chromatic number", "hadwigers conjecture", "complete graph", "infinite coloring number" ], "note": { "typesetting": "TeX", "pages": 2, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1212.3093V" } } }