{ "id": "1212.2383", "version": "v2", "published": "2012-12-11T11:00:06.000Z", "updated": "2013-11-22T14:33:41.000Z", "title": "Generalized dimensions of images of measures under Gaussian processes", "authors": [ "Kenneth Falconer", "Yimin Xiao" ], "comment": "26 pages", "categories": [ "math.PR" ], "abstract": "We show that for certain Gaussian random processes and fields X:R^N to R^d, D_q(mu_X) = min{d, D_q(mu)/alpha} a.s. for an index alpha which depends on Holder properties and strong local nondeterminism of X, where q>1, where D_q denotes generalized q-dimension and where mu_X is the image of the measure mu under X. In particular this holds for index-alpha fractional Brownian motion, for fractional Riesz-Bessel motions and for certain infinity scale fractional Brownian motions.", "revisions": [ { "version": "v2", "updated": "2013-11-22T14:33:41.000Z" } ], "analyses": { "subjects": [ "60G22", "28A80" ], "keywords": [ "gaussian processes", "generalized dimensions", "infinity scale fractional brownian motions", "index-alpha fractional brownian motion", "gaussian random processes" ], "note": { "typesetting": "TeX", "pages": 26, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1212.2383F" } } }