{ "id": "1212.2052", "version": "v4", "published": "2012-12-10T13:17:47.000Z", "updated": "2013-02-18T15:30:00.000Z", "title": "Ricci curvature and $L^p$-convergence", "authors": [ "Shouhei Honda" ], "comment": "65 pages. Theorem 1.6 and Corollary 4.19 added", "categories": [ "math.DG", "math.FA", "math.MG" ], "abstract": "We give the definition of $L^p$-convergence of tensor fields with respect to the Gromov-Hausdorff topology and several fundamental properties of the convergence. We apply this to establish a Bochner-type inequality which keeps the term of Hessian on the Gromov-Hausdorff limit space of a sequence of Riemannian manifolds with a lower Ricci curvature bound and to give a geometric explicit formula for the Dirichlet Laplacian on a limit space defined by Cheeger-Colding. We also prove a continuity of the first eigenvalues of the p-Laplacian with respect to the Gromov-Hausdorff topology.", "revisions": [ { "version": "v4", "updated": "2013-02-18T15:30:00.000Z" } ], "analyses": { "keywords": [ "convergence", "lower ricci curvature bound", "gromov-hausdorff topology", "gromov-hausdorff limit space", "geometric explicit formula" ], "note": { "typesetting": "TeX", "pages": 65, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1212.2052H" } } }