{ "id": "1212.1695", "version": "v1", "published": "2012-12-07T19:56:33.000Z", "updated": "2012-12-07T19:56:33.000Z", "title": "On a weighted variable spaces $L_{p(x), ω}$ for $0< p(x)< 1$ and weighted Hardy inequality", "authors": [ "Rovshan A. Bandaliev" ], "categories": [ "math.CA" ], "abstract": "In this paper a weighted variable exponent Lebesgue spaces $L_{p(x), \\omega}$ for $0< p(x)< 1$ is investigated. We show that this spaces is a quasi-Banach spaces. Note that embedding theorem between weight variable Lebesgue spaces is proved. In particular, we show that $L_{p(x), \\omega}(\\Omega)$ for $0< p(x)< 1$ isn't locally convex. Also, in this paper a some two-weight estimates for Hardy operator are proved.", "revisions": [ { "version": "v1", "updated": "2012-12-07T19:56:33.000Z" } ], "analyses": { "keywords": [ "weighted hardy inequality", "weighted variable spaces", "weight variable lebesgue spaces", "weighted variable exponent lebesgue spaces", "quasi-banach spaces" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1212.1695B" } } }