{ "id": "1212.1379", "version": "v3", "published": "2012-12-06T16:59:58.000Z", "updated": "2013-06-09T14:09:56.000Z", "title": "Optimal On-Line Selection of an Alternating Subsequence: A Central Limit Theorem", "authors": [ "Alessandro Arlotto", "J. Michael Steele" ], "comment": "24 pages, 1 figure", "journal": "Advances in Applied Probability, 42 (2), 2014, 536-559", "doi": "10.1239/aap/1401369706", "categories": [ "math.PR", "math.OC" ], "abstract": "We analyze the optimal policy for the sequential selection of an alternating subsequence from a sequence of $n$ independent observations from a continuous distribution $F$, and we prove a central limit theorem for the number of selections made by that policy. The proof exploits the backward recursion of dynamic programming and assembles a detailed understanding of the associated value functions and selection rules.", "revisions": [ { "version": "v3", "updated": "2013-06-09T14:09:56.000Z" } ], "analyses": { "subjects": [ "60C05", "60G40", "90C40", "60F05", "90C27", "90C39" ], "keywords": [ "central limit theorem", "optimal on-line selection", "alternating subsequence", "optimal policy", "sequential selection" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 24, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1212.1379A" } } }