{ "id": "1212.0889", "version": "v1", "published": "2012-12-04T22:04:58.000Z", "updated": "2012-12-04T22:04:58.000Z", "title": "Polynomial decay of correlations in linked-twist maps", "authors": [ "J. Springham", "R. Sturman" ], "categories": [ "math.DS", "nlin.CD" ], "abstract": "Linked-twist maps are area-preserving, piece-wise diffeomorphisms, defined on a subset of the torus. They are non-uniformly hyperbolic generalisations of the well-known Arnold Cat Map. We show that a class of canonical examples have polynomial decay of correlations for \\alpha-H\\\"{o}lder observables, of order 1/n.", "revisions": [ { "version": "v1", "updated": "2012-12-04T22:04:58.000Z" } ], "analyses": { "keywords": [ "polynomial decay", "linked-twist maps", "correlations", "well-known arnold cat map", "non-uniformly hyperbolic generalisations" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1212.0889S" } } }