{ "id": "1212.0595", "version": "v1", "published": "2012-12-04T01:26:02.000Z", "updated": "2012-12-04T01:26:02.000Z", "title": "On The Critical Number of Finite Groups (II)", "authors": [ "Qinghong Wang", "Yongke Qu" ], "categories": [ "math.NT", "math.CO" ], "abstract": "Let G be a finite group and S a subset of G\\{0}. We call S an additive basis of G if every element of G can be expressed as a sum over a nonempty subset in some order. Let cr(G) be the smallest integer t such that every subset of G\\{0} of cardinality t is an additive basis of G. In this paper, we determine cr(G) for the following cases: (i) G is a finite nilpotent group; (ii) G is a group of even order which possesses a subgroup of index 2.", "revisions": [ { "version": "v1", "updated": "2012-12-04T01:26:02.000Z" } ], "analyses": { "keywords": [ "finite group", "critical number", "additive basis", "finite nilpotent group", "nonempty subset" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1212.0595W" } } }