{ "id": "1212.0525", "version": "v1", "published": "2012-12-03T20:24:19.000Z", "updated": "2012-12-03T20:24:19.000Z", "title": "Semisimple types for p-adic classical groups", "authors": [ "Michitaka Miyauchi", "Shaun Stevens" ], "comment": "37 pges", "categories": [ "math.RT", "math.NT" ], "abstract": "We construct, for any symplectic, unitary or special orthogonal group over a locally compact nonarchimedean local field of odd residual characteristic, a type for each Bernstein component of the category of smooth representations, using Bushnell--Kutzko's theory of covers. Moreover, for a component corresponding to a cuspidal representation of a maximal Levi subgroup, we prove that the Hecke algebra is either abelian, or a generic Hecke algebra on an infinite dihedral group, with parameters which are, at least in principle, computable via results of Lusztig.", "revisions": [ { "version": "v1", "updated": "2012-12-03T20:24:19.000Z" } ], "analyses": { "subjects": [ "22E50" ], "keywords": [ "p-adic classical groups", "semisimple types", "locally compact nonarchimedean local field", "infinite dihedral group", "special orthogonal group" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1212.0525M" } } }