{ "id": "1212.0045", "version": "v1", "published": "2012-11-30T23:55:39.000Z", "updated": "2012-11-30T23:55:39.000Z", "title": "Products of Toeplitz operators on the Fock space", "authors": [ "Hon Rae Cho", "Jong-Do Park", "Kehe Zhu" ], "categories": [ "math.FA", "math.CV" ], "abstract": "Let $f$ and $g$ be functions, not identically zero, in the Fock space $F^2$ of $C_n$. We show that the product $T_fT_{\\bar g}$ of Toeplitz operators on $F^2$ is bounded if and only if $f(z)=e^{q(z)}$ and $g(z)=ce^{-q(z)}$, where $c$ is a nonzero constant and $q$ is a linear polynomial.", "revisions": [ { "version": "v1", "updated": "2012-11-30T23:55:39.000Z" } ], "analyses": { "keywords": [ "fock space", "toeplitz operators", "nonzero constant", "linear polynomial" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1212.0045C" } } }