{ "id": "1212.0002", "version": "v1", "published": "2012-11-30T12:58:05.000Z", "updated": "2012-11-30T12:58:05.000Z", "title": "On the product formula on non-compact Grassmannians", "authors": [ "Piotr Graczyk", "Patrice Sawyer" ], "categories": [ "math.RT", "math.PR" ], "abstract": "We study the absolute continuity of the convolution $\\delta_{e^X}^\\natural \\star \\delta_{e^Y}^\\natural$ of two orbital measures on the symmetric space $SO_0(p,q)/SO(p)\\timesSO(q)$, $q>p$. We prove sharp conditions on $X$, $Y\\in\\a$ for the existence of the density of the convolution measure. This measure intervenes in the product formula for the spherical functions. We show that the sharp criterion developed for $\\SO_0(p,q)/\\SO(p)\\times\\SO(q)$ will also serve for the spaces $SU(p,q)/S(U(p)\\timesU(q))$ and $Sp(p,q)/Sp(p)\\timesSp(q)$, $q>p$. We also apply our results to the study of absolute continuity of convolution powers of an orbital measure $\\delta_{e^X}^\\natural$.", "revisions": [ { "version": "v1", "updated": "2012-11-30T12:58:05.000Z" } ], "analyses": { "keywords": [ "product formula", "non-compact grassmannians", "orbital measure", "absolute continuity", "convolution powers" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1212.0002G" } } }