{ "id": "1211.7206", "version": "v1", "published": "2012-11-30T10:01:30.000Z", "updated": "2012-11-30T10:01:30.000Z", "title": "A Conjecture Connected with Units of Quadratic Fields", "authors": [ "Nihal Bircan" ], "categories": [ "math.NT" ], "abstract": "In this article, we consider the order $\\mathcal{O}_{f}={x+yf\\sqrt{d}:x,\\ y \\in \\Z}$ with conductor $f\\in\\N$ in a real quadratic field $K=\\mathbb{Q}(\\sqrt{d})$ where $d>0$ is square-free and $d\\equiv2,3\\pmod 4$. We obtain numerical information about $ n(f)=n(p)=min{\\nu\\in\\N : \\varepsilon^{\\nu}\\in \\mathcal{O}_{p}}$ where $\\varepsilon>1$ is the fundamental unit of $K$ and $p$ is an odd prime. Our numerical results suggest that the frequencies of $\\frac{p\\pm1}{2n(p)}$ or $\\frac{p\\pm1}{n(p)}$ should have a limit as the ranges of $d$ and $p$ go to infinity.", "revisions": [ { "version": "v1", "updated": "2012-11-30T10:01:30.000Z" } ], "analyses": { "subjects": [ "11Y40", "11R27", "11R11" ], "keywords": [ "conjecture", "real quadratic field", "fundamental unit", "odd prime", "square-free" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1211.7206B" } } }