{ "id": "1211.7125", "version": "v3", "published": "2012-11-30T00:15:43.000Z", "updated": "2014-04-28T13:50:00.000Z", "title": "Moments and Lyapunov exponents for the parabolic Anderson model", "authors": [ "Alexei Borodin", "Ivan Corwin" ], "comment": "Published in at http://dx.doi.org/10.1214/13-AAP944 the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org)", "journal": "Annals of Applied Probability 2014, Vol. 24, No. 3, 1172-1198", "doi": "10.1214/13-AAP944", "categories": [ "math.PR", "math-ph", "math.MP" ], "abstract": "We study the parabolic Anderson model in $(1+1)$ dimensions with nearest neighbor jumps and space-time white noise (discrete space/continuous time). We prove a contour integral formula for the second moment and compute the second moment Lyapunov exponent. For the model with only jumps to the right, we prove a contour integral formula for all moments and compute moment Lyapunov exponents of all orders.", "revisions": [ { "version": "v3", "updated": "2014-04-28T13:50:00.000Z" } ], "analyses": { "keywords": [ "parabolic anderson model", "contour integral formula", "second moment lyapunov exponent", "space-time white noise", "nearest neighbor jumps" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1211.7125B" } } }