{ "id": "1211.6921", "version": "v1", "published": "2012-11-29T14:05:09.000Z", "updated": "2012-11-29T14:05:09.000Z", "title": "Stability of syzygy bundles on an algebraic surface", "authors": [ "Lawrence Ein", "Robert Lazarsfeld", "Yusuf Mustopa" ], "categories": [ "math.AG" ], "abstract": "Given a very ample line bundle L on a projective variety X, the syzygy bundle M_L associated to L is the kernel of the evaluation map on sections of L. Our main result is that if X is a smooth projective surface defined over an algebraically closed field, then M_L is slope-stable for any sufficiently positive L.", "revisions": [ { "version": "v1", "updated": "2012-11-29T14:05:09.000Z" } ], "analyses": { "keywords": [ "syzygy bundle", "algebraic surface", "ample line bundle", "evaluation map", "main result" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1211.6921E" } } }