{ "id": "1211.6875", "version": "v1", "published": "2012-11-29T11:02:16.000Z", "updated": "2012-11-29T11:02:16.000Z", "title": "Permutations over cyclic groups", "authors": [ "Zoltán Lóránt Nagy" ], "journal": "European Journal of Combinatorics 41C (2014), pp. 68-78", "doi": "10.1016/j.ejc.2014.03.010", "categories": [ "math.CO" ], "abstract": "Generalizing a result in the theory of finite fields we prove that, apart from a couple of exceptions that can be classified, for any elements $a_1,...,a_m$ of the cyclic group of order $m$, there is a permutation $\\pi$ such that $1a_{\\pi(1)}+...+ma_{\\pi(m)}=0$.", "revisions": [ { "version": "v1", "updated": "2012-11-29T11:02:16.000Z" } ], "analyses": { "keywords": [ "cyclic group", "permutation", "finite fields" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1211.6875L" } } }