{ "id": "1211.6567", "version": "v1", "published": "2012-11-28T10:22:49.000Z", "updated": "2012-11-28T10:22:49.000Z", "title": "Solving $a\\pm b=2c$ in the elements of finite sets", "authors": [ "Vsevolod F. Lev", "Rom Pinchasi" ], "categories": [ "math.NT" ], "abstract": "We show that if $A$ and $B$ are finite sets of real numbers, then the number of triples $(a,b,c)\\in A\\times B\\times (A\\cup B)$ with $a+b=2c$ is at most $(0.15+o(1))(|A|+|B|)^2$ as $|A|+|B|\\to\\infty$. As a corollary, if $A$ is antisymmetric (that is, $A\\cap(-A)=\\est$), then there are at most $(0.3+o(1))|A|^2$ triples $(a,b,c)$ with $a,b,c\\in A$ and $a-b=2c$. In the general case where $A$ is not necessarily antisymmetric, we show that the number of triples $(a,b,c)$ with $a,b,c\\in A$ and $a-b=2c$ is at most $(0.5+o(1))|A|^2$. These estimates are sharp.", "revisions": [ { "version": "v1", "updated": "2012-11-28T10:22:49.000Z" } ], "analyses": { "keywords": [ "finite sets", "real numbers", "general case", "necessarily antisymmetric" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1211.6567L" } } }