{ "id": "1211.6480", "version": "v1", "published": "2012-11-27T23:51:05.000Z", "updated": "2012-11-27T23:51:05.000Z", "title": "Destruction of Lagrangian torus for positive definite Hamiltonian systems", "authors": [ "Chong-Qing Cheng", "Lin Wang" ], "comment": "accepted by Geometric and Functional Analysis (GAFA). arXiv admin note: substantial text overlap with arXiv:1208.2840", "categories": [ "math.DS", "math.FA" ], "abstract": "For an integrable Hamiltonian $H_0=1/2\\sum_{i=1}^dy_i^2$ $(d\\geq 2)$, we show that any Lagrangian torus with a given unique rotation vector can be destructed by arbitrarily $C^{2d-\\delta}$-small perturbations. In contrast with it, it has been shown that KAM torus with constant type frequency persists under $C^{2d+\\delta}$-small perturbations.", "revisions": [ { "version": "v1", "updated": "2012-11-27T23:51:05.000Z" } ], "analyses": { "keywords": [ "positive definite hamiltonian systems", "lagrangian torus", "constant type frequency persists", "destruction", "small perturbations" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1211.6480C" } } }