{ "id": "1211.6063", "version": "v2", "published": "2012-11-26T18:54:23.000Z", "updated": "2013-12-23T22:42:05.000Z", "title": "Freezing Transitions and Extreme Values: Random Matrix Theory, $ΞΆ(1/2+it)$, and Disordered Landscapes", "authors": [ "Yan V. Fyodorov", "Jonathan P. Keating" ], "comment": "The published version", "journal": "Phil. Trans. R. Soc. A v.372 (2014), 20120503 [32 pages]", "doi": "10.1098/rsta.2012.0503", "categories": [ "math-ph", "cond-mat.dis-nn", "math.MP", "math.NT", "math.PR" ], "abstract": "We argue that the freezing transition scenario, previously conjectured to occur in the statistical mechanics of 1/f-noise random energy models, governs, after reinterpretation, the value distribution of the maximum of the modulus of the characteristic polynomials p_N(\\theta) of large N\\times N random unitary (CUE) matrices; i.e. the extreme value statistics of p_N(\\theta) when N \\rightarrow\\infty. In addition, we argue that it leads to multifractal-like behaviour in the total length \\mu_N(x) of the intervals in which |p_N(\\theta)|>N^x, x>0, in the same limit. We speculate that our results extend to the large values taken by the Riemann zeta-function \\zeta(s) over stretches of the critical line s=1/2+it of given constant length, and present the results of numerical computations of the large values of \\zeta(1/2+it). Our main purpose is to draw attention to the unexpected connections between these different extreme value problems.", "revisions": [ { "version": "v2", "updated": "2013-12-23T22:42:05.000Z" } ], "analyses": { "keywords": [ "random matrix theory", "freezing transition", "disordered landscapes", "large values taken", "extreme value statistics" ], "tags": [ "journal article" ], "publication": { "journal": "Philosophical Transactions of the Royal Society of London Series A", "year": 2013, "month": "Dec", "volume": 372, "number": 2007, "pages": 20120503 }, "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013RSPTA.37220503F" } } }