{ "id": "1211.6037", "version": "v3", "published": "2012-11-26T17:49:28.000Z", "updated": "2013-09-07T15:43:26.000Z", "title": "Liberation of Projections", "authors": [ "Benoit Collins", "Todd Kemp" ], "comment": "53 pages", "categories": [ "math.FA", "math.AP", "math.CV", "math.OA", "math.PR" ], "abstract": "We study the liberation process for projections: $(p,q)\\mapsto (p_t,q)= (u_tpu_t^\\ast,q)$ where $u_t$ is a free unitary Brownian motion freely independent from $\\{p,q\\}$. Its action on the operator-valued angle $qp_tq$ between the projections induces a flow on the corresponding spectral measures $\\mu_t$; we prove that the Cauchy transform of the measure satisfies a holomorphic PDE. We develop a theory of subordination for the boundary values of this PDE, and use it to show that the spectral measure $\\mu_t$ possesses a piecewise analytic density for any $t>0$ and any initial projections of trace $\\frac12$. We us this to prove the Unification Conjecture for free entropy and information in this trace $\\frac12$ setting.", "revisions": [ { "version": "v3", "updated": "2013-09-07T15:43:26.000Z" } ], "analyses": { "subjects": [ "46L54", "42B37", "60H30" ], "keywords": [ "projections", "liberation", "unitary brownian motion freely independent", "free unitary brownian motion", "corresponding spectral measures" ], "note": { "typesetting": "TeX", "pages": 53, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1211.6037C" } } }