{ "id": "1211.5771", "version": "v2", "published": "2012-11-25T16:09:32.000Z", "updated": "2012-11-29T14:33:00.000Z", "title": "Capturing Forms in Dense Subsets of Finite Fields", "authors": [ "Brandon Hanson" ], "comment": "Corrected typos. Added reference to other work on the subject", "categories": [ "math.NT", "math.CO" ], "abstract": "An open problem of arithmetic Ramsey theory asks if given a finite $r$-colouring $c:\\mathbb{N}\\to\\{1,...,r\\}$ of the natural numbers, there exist $x,y\\in \\mathbb{N}$ such that $c(xy)=c(x+y)$ apart from the trivial solution $x=y=2$. More generally, one could replace $x+y$ with a binary linear form and $xy$ with a binary quadratic form. In this paper we examine the analogous problem in a finite field $\\mathbb{F}_q$. Specifically, given a linear form $L$ and a quadratic from $Q$ in two variables, we provide estimates on the necessary size of $A\\subset \\mathbb{F}_q$ to guarantee that $L(x,y)$ and $Q(x,y)$ are elements of $A$ for some $x,y\\in\\mathbb{F}_q$.", "revisions": [ { "version": "v2", "updated": "2012-11-29T14:33:00.000Z" } ], "analyses": { "subjects": [ "11T24", "05D10" ], "keywords": [ "finite field", "dense subsets", "capturing forms", "arithmetic ramsey theory asks", "binary linear form" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1211.5771H" } } }