{ "id": "1211.5622", "version": "v5", "published": "2012-11-23T22:48:47.000Z", "updated": "2013-12-19T07:56:28.000Z", "title": "τ-rigid modules for algebras with radical square zero", "authors": [ "Xiaojin Zhang" ], "categories": [ "math.RT", "math.RA" ], "abstract": "In this paper, we show that for an algebra $\\Lambda$ with radical square zero and an indecomposable $\\Lambda$-module $M$ such that $\\Lambda$ is Gorenstein of finite type or $\\tau M$ is $\\tau$-rigid, $M$ is $\\tau$-rigid if and only if the first two projective terms of a minimal projective resolution of $M$ have no on-zero direct summands in common. We also determined all $\\tau$-tilting modules for Nakayama algebras with radical square zero. Moreover, by giving a construction theorem we show that a basic connected radical square zero algebra admitting a unique $\\tau$-tilting module is local.", "revisions": [ { "version": "v5", "updated": "2013-12-19T07:56:28.000Z" } ], "analyses": { "subjects": [ "16G10", "16G70", "16E10" ], "keywords": [ "tilting module", "connected radical square zero algebra", "on-zero direct summands", "basic connected radical square zero", "radical square zero algebra admitting" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1211.5622Z" } } }