{ "id": "1211.5263", "version": "v2", "published": "2012-11-22T11:30:54.000Z", "updated": "2013-02-19T21:17:16.000Z", "title": "Skeleta of Affine Hypersurfaces", "authors": [ "Helge Ruddat", "Nicolò Sibilla", "David Treumann", "Eric Zaslow" ], "comment": "41 pages, 3 figure", "categories": [ "math.AG", "math.AT" ], "abstract": "A smooth affine hypersurface Z of complex dimension n is homotopy equivalent to an n-dimensional cell complex. Given a defining polynomial f for Z as well as a regular triangulation of its Newton polytope, we provide a purely combinatorial construction of a compact topological space S as a union of components of real dimension n, and prove that S embeds into Z as a deformation retract. In particular, Z is homotopy equivalent to S.", "revisions": [ { "version": "v2", "updated": "2013-02-19T21:17:16.000Z" } ], "analyses": { "subjects": [ "14J70", "14R99", "55P10", "14M25", "14T05" ], "keywords": [ "homotopy equivalent", "smooth affine hypersurface", "n-dimensional cell complex", "complex dimension", "regular triangulation" ], "note": { "typesetting": "TeX", "pages": 41, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1211.5263R" } } }