{ "id": "1211.5033", "version": "v1", "published": "2012-11-20T00:22:25.000Z", "updated": "2012-11-20T00:22:25.000Z", "title": "A closed-form expression for zeta(2n+1) reveals a self-recursive function", "authors": [ "Michael A. Idowu" ], "categories": [ "math.NT" ], "abstract": "Euler discovered a formula for expressing the value of the Riemann zeta function for all even positive integer arguments. A closed-form expression for the Riemann zeta function for all odd integer arguments, based on the values of the Dirichlet beta function, euler numbers and pi, reveals a new evidence about the self-recursive nature of Riemann zeta function at odd integers. We demonstrate for the first time that the Riemann zeta function at odd integers always produces a recurrence relation that is self-recursive.", "revisions": [ { "version": "v1", "updated": "2012-11-20T00:22:25.000Z" } ], "analyses": { "keywords": [ "riemann zeta function", "closed-form expression", "self-recursive function", "dirichlet beta function", "odd integer arguments" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1211.5033I" } } }