{ "id": "1211.4917", "version": "v2", "published": "2012-11-21T02:29:26.000Z", "updated": "2013-10-09T18:03:15.000Z", "title": "On arithmetic progressions in A + B + C", "authors": [ "Kevin Henriot" ], "comment": "29 pages, fixed typos", "categories": [ "math.NT", "math.CO" ], "abstract": "Our main result states that when A, B, C are subsets of Z/NZ of respective densities \\alpha,\\beta,\\gamma, the sumset A + B + C contains an arithmetic progression of length at least e^{c(\\log N)^c} for densities \\alpha > (\\log N)^{-2 + \\epsilon} and \\beta,\\gamma > e^{-c(\\log N)^c}, where c depends on \\epsilon. Previous results of this type required one set to have density at least (\\log N)^{-1 + o(1)}. Our argument relies on the method of Croot, Laba and Sisask to establish a similar estimate for the sumset A + B and on the recent advances on Roth's theorem by Sanders. We also obtain new estimates for the analogous problem in the primes studied by Cui, Li and Xue.", "revisions": [ { "version": "v2", "updated": "2013-10-09T18:03:15.000Z" } ], "analyses": { "keywords": [ "arithmetic progression", "main result states", "roths theorem", "similar estimate", "argument relies" ], "note": { "typesetting": "TeX", "pages": 29, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1211.4917H" } } }